This article was downloaded by: [Tomsk State University of Control Systems and

Radio]

On: 18 February 2013, At: 14:48

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information:

http://www.tandfonline.com/loi/gmcl19

The Saturation of the Drift Velocity of Holes at High

G. Verbeek ^a , M. Van Der Auweraer ^a , F. C. Deschryver ^a ,

C. Geelen ^a , D. Terrell ^b & S. De Meuter ^b

^a Lab. For Molecular Dynamics and Spectroscopy K.U. Leuven Celestijnelaan, 200-F, B-3001, Heverlee, Belgium

^b Agfa-Gevaert N.V., Septestraat 27, B-2650, Mortsel, Belgium

Version of record first published: 04 Oct 2006.

To cite this article: G. Verbeek, M. Van Der Auweraer, F. C. Deschryver, C. Geelen, D. Terrell & S. De Meuter (1992): The Saturation of the Drift Velocity of Holes at High, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 217:1, 243-249

To link to this article: http://dx.doi.org/10.1080/10587259208046908

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever

caused arising directly or indirectly in connection with or arising out of the use of this material.

Mol. Cryst. Liq. Cryst. 1992, Vol. 217, pp. 243-249 Reprints available directly from the publisher Photocopying permitted by license only © 1992 Gordon and Breach Science Publishers S.A. Printed in the United States of America

> THE SATURATION OF THE DRIFT VELOCITY OF HOLES AT HIGH ELECTRIC FIELDS IN DISPERSIONS OF ELECTRON DONORS IN A POLYMER MATRIX.

> AUWERAERa*, VERBEEKa DER F.C. Μ. VAN SCHRYVERa*, C. GEELENa, D. TERRELLD, S. DE MEUTERD for Molecular Dynamics and Spectroscopy K.U. 200-F, Leuven Celestijnelaan B-3001 Heverlee, Belgium. b Agfa-Gevaert N.V. Septestraat 27, B-2650 Mortsel, Belgium.

> mobility Abstract The decrease of the hole 17% polycarbonate doped with triphenylaminobenzene derivative at electric fields $1.0 \times 10^6 \text{ Vcm}^{-1}$ in is rationalized exceeding framework of the Marcus theory. By analysis of mobility data in the framework of the expression, derived by Marcus and relating the free energy of electron transfer to the free activation energy the average hopping distance, process, reorganisation energy and the barrierless transfer rate constant could be obtained. In this way physical acceptable values, amounting to 2.7nm, 0.33eV, 4.88 \times 10^6 s⁻¹, were found for the respective parameters at room temperature.

INTRODUCTION

The transport of electrons or holes in disordered organic materials as e.g. dispersions of molecules with a ionization potential in a polymer matrix is currently considered as a sequence of electron transfer processes species $^{1-10}$. In between molecular disordered materials those molecular characterized by species are distribution of energy levels. The increase of the charge carrier mobility as the applied electric field strength is increased has been rationalized by the induction of a overlap¹¹ between the distribution of levels of the oxidized and reduced species 1-8 where this electron tranfer process becomes on the average more

exergonic. Most of the current models¹⁻⁸ assume however a simplified relationship between the rate of the individual electron transfer steps and the energy change associated with those electron transfer steps. Therefore they cannot explain the recent observations of the decrease of the hole mobility at high applied field strength for a molecularly doped polymer¹². When however the rate of the individual electron transfer steps is considered¹⁰ in the framework of the Marcus theory^{11,13-18} the decrease of the hole mobility at high applied fields can be rationalized.

THEORY

The net rate constant, k_{obs} , for the transfer of a hole or an electron between two neighbouring sites can be considered as the difference of the rate constants of a forward, k_{f} , and a reverse, k_{b} , process.

$$k_{obs} = k_f - k_b \tag{1}$$

Taking into account microreversibility equation (1) can also be written in the following way:

$$k_{obs} = k_f/[1 - exp(\Delta G_o/kT)] = k_f/[1 - exp(-Eer/kT)]$$
 (2)

Where the ΔG_O is standard free enthalpy difference between two neighbouring hopping sites, r the average distance between two neighbouring sites, e the elementary charge and E the applied electric field. As k_f describes an electron transfer process, it can be evaluated using the current theory of electron transfer processes $^{15-18}$.

$$k_f = k_O \exp(-\Delta G^{\neq}_f/kT)$$
 (3)

with

$$\Delta G^{\neq}_{f} = \frac{(\Delta G_{o} + \lambda)^{2}}{4\lambda} \qquad (4)$$

Where $k_{\rm O}$ is the rate constant of an activationless electron transfer process and λ the reorganisation free enthalpy associated with the electron transfer process. By combining and rearranging equation 3 and 4 the rate expression for electron transfer can also be written in the following way:

$$\ln(k_f) = \ln(k_o) - \left(\frac{\Delta G^2_o}{4kT\lambda} + \frac{\Delta G_o}{2kT} + \frac{\lambda}{4kT}\right)$$
 (5)

Equation (5) implies that a plot kT $\ln(k_f) + \Delta G_O/2$ versus $(\Delta G_O)^2$ should yield a straight line with slope - $1/4\lambda$ and intercept kT $\ln(k_O) - \lambda/4$. k_{ODS} is related to μ , the mobility of the charge carriers through the sample with thickness d by equation 6

$$\mu = d/(Et_{tr}) = rk_{obs}/E$$
 (6).

Combining equation (2) and (6) k_f can be obtained from the experimentally observed values of the mobility:

$$k_{f} = \frac{\mu E}{r[1 - \exp(\Delta G_{O}/kT)]}$$
 (7)

Combination of equation 6 and 7 will allow to fit the experimental values of μ obtained at different field strengths to r, k_0 and λ .

EXPERIMENTAL

The charge transport compound, 5'-[4-[bis(4-ethyl-et

adapted to avoid distortion of the transient photocurrents by the RC-time of the set-up.

RESULTS AND DISCUSSION

While at fields below $1.0 \times 10^6 \ \text{Vcm}^{-1}$ the transient photocurrent consists typically of an initial spike and a plateau region followed by a tail; at fields exceeding $1.0 \times 10^6 \ \text{Vcm}^{-1}$ only an initial spike and a tail were observed. The plateau region and tail can be analysed in the framework of equations (8a and 8b) yielding t_{tr} , α , β .

$$i(t) \sim t^{-1+\alpha}$$
 $t < t_{tr}$ (8.a)

$$i(t) = t^{-1+\beta}$$
 $t>t_{tr}$ (8.b)

amount to 0.95±0.10 and and ß respectively and do not depend upon the applied field strength. The values obtained for α and β indicate that charge transport is non-dispersive. The initial spike is in this case probably due to the relaxation phenomena, as described by Bässler8,23, preceeding the onset of nondispersive transport. Although at fields exceeding 1.0 x 10^6 Vcm⁻¹ the distorsion of the plateau region by the initial spike (figure 1) no longer allows to analyse the transient photocurrents in the framework of equation 8a and b the transit time can still be obtained from the inflection point of a log-i versus log-t plot. The hole mobility in polycarbonate film doped with 17% p-pEFTP decreases as the electric field is increased $1.0 \times 10^6 \text{ Vcm}^{-1}$ (Fig. 2).

Combination of equation (5) and equation (7) yields equation (9). It was possible to analyse the experimental data in the framework of equation (9) using r, λ and k_0 as adjustable parameters. It this way 2.7nm, 0.33eV and

4.88 x 10^6 s⁻¹ were obtained for r, λ and k_o respectively.

$$kT \ln \left[\frac{\mu E}{r[1 - \exp(\Delta G_O/kT)]} \right] + \Delta G_O/2 = kT \ln(k_O) - \lambda/4 - \Delta G_O^2/4\lambda$$
(9)

The average distance between two neighbouring molecules, r_m , calculated from the macroscopic properties of the dispersion according to equation 10 amounts to 2.5 nm for a sample containing 17 % p-EFTP.

$$r_{\rm m} = 2(3M/(4\pi Ad))^{1/3} \tag{10}$$

Where M is molecular weight (976.4) of the hole transporting molecule, d is the density (1.12) of the dispersion and A Avogadro's number.

Acknowledgments:

M.V.d.A. is a "Onderzoeksleider" of the "Fonds voor Kollectief Fundamenteel Onderzoek". The authors thank Agfa-Gevaert for financial support and a scholarship to GV. The continuing support of Scientific Programming to the K.U.Leuven research group is gratefully acknowledged.

REFERENCES

- (1) L.B. Schein, <u>Electrophotography and Development Physics</u> (Springer, New York, 1988)
- (2)J.O. Williams, Adv. Phys. Org. Chem. 16 26 (1978)
- (3) M. Stolka, J.F. Yanus and D.M. Pai, <u>J. Phys. Chem.</u> 88 (1984) 4707.
- (4) G. Pfister, <u>Phys. Rev. B</u> <u>16</u> 3676 (1977).
- (5) W.G. Gill, Mol. Cryst. Liq. Cryst. 87 1 (1987)
- (6) L.B. Schein, A. Rosenberg and L.S. Rice, <u>J. Appl.</u> Phys. 60 4287 (1986).
- (7) J.S. Santos Lemus and J. Hirsh, <u>Philos. Mag. B</u> <u>53</u> 25 (1986).
- (8) H. Bässler, Philos. Mag. 50 347 (1984).
- (9) M.R.V. Sahuyn, Photogr. Sci. Eng. 28 185 (1984).
- (10) J.S. Facci and M. Stolka, Phil. Mag. B 54 1 (1986).
- (11) H. Gerischer, Z. Phys. Chem. N.F. 26 223 and 325 (1960).
- (12) Huoy-Jen Yuh and D.M. Pai, <u>Mol. Cryst. Liq. Cryst.</u> <u>183</u> 217 (1990).
- (13) J.J. Hopfield, Proc. Nat. Acad. Sci. 71 3640 (1974).
- (14) T. Kakitani and N. Mataga, <u>J. Phys. Chem.</u> <u>92</u> 5059 (1988).
- (15) R.A. Marcus, Ann. Rev. Phys. Chem. 13 155 (1964).

- (16) R.A. Marcus, <u>J. Chem. Phys.</u> <u>81</u> 4494 (1984).
- (17) J. Jortner, <u>J. Chem. Phys.</u> <u>64</u> 4680 (1976).
- (18) J. Jortner and M. Bixon, <u>J. Chem. Phys. 88</u> 167 (1988)
- (19) M. Van Der Auweraer, F.C. De Schryver, G. Verbeek, C. Geelen, D. Terrell and S. De Meuter, Eur. Pat. EP 349034
- (20) F.J. Dolezak, <u>Photoconductivity and related Phenomena</u>, Mort J. & Pai D.M., editors (Elsevier Sci. Publ. Co., New York), p27 (1976)
- (21) W.E. Spear, <u>J. Non-Cryst. Solids</u> <u>1</u> 197 (1969)
- (22) F.C. Bos and D.M. Burland, Phys. Rev. Lett. 58 152 (1987)
- (23) H. Bässler, Phys. Stat. Sol. b 107 9 (1981)

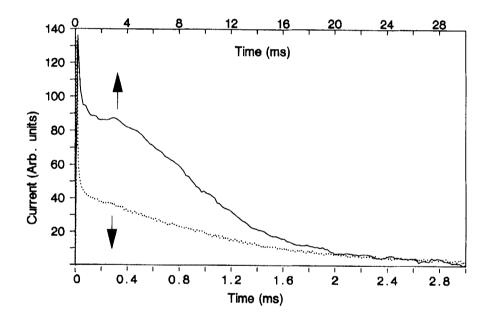


FIGURE 1 A typical current pulse of a 11.5- μ m sample measured at an electric field of 2.1 x 10⁵ Vcm⁻¹ (-----) and 1.2 x 10⁶ Vcm⁻¹ (······)

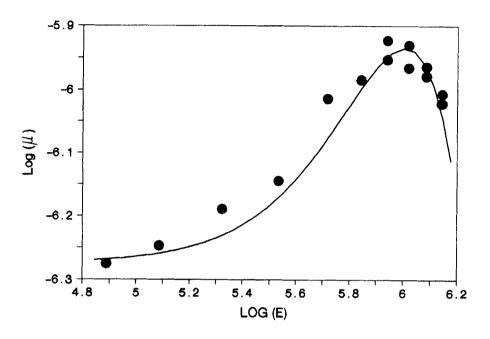


FIGURE 2 Drift mobility as a function of electric field for 17% doping of p-pEFTP in polycarbonate.